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Effective Robust Design Strategy employing Ordinal

Variance Minimization and Adaptive Mean Constraint

Satisfaction
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We present a practical and efficient methodology for design optimization where robust-

ness to uncertain random variables is of paramount concern. In particular, the methodology

addresses design of the system to meet a target nominal or mean desired behavior, while

finding the point of minimum variability of system behavior in the feasible portion of the

design space. The robust-design methodology first involves finding a hyperplane where the

response is approximately at the mean value. Then, the method incorporates spatially-

correlated ordinal optimization for exceedingly economical variance minimization in the

design space. To estimate mean system behavior at any point in the design space, either

of two methods are found to be most suitable, depending on how many random variables

contribute to variability in system behavior. For less than four such random variables, a

Moment Estimation method appears most efficient and effective, otherwise Latin Hyper-

cube sampling with an identifiable number of samples to get appropriately small confidence

intervals is most effective. We apply the optimization procedure to an automotive device

design robustness problem. We consider a snap-fit composed of a moving part and a sta-

tionary part which are designed to the specification of three uncertain design variables.

The three design variables and an additional noise variable determine the friction force

between the two parts. Using our process, we find a point in the design space of min-

imum variance subject to a constraint that the mean of the friction force is a set level.

We examine a two-dimensional example and a three-dimensional example. We consider an

exhaustive search and reliability methods for comparison of results and cost.

I. Introduction

Optimization under uncertainty refers to performing an optimization procedure when there is uncertainty
or noise in the variables to be optimized over. This algorithm has been designed to minimize the number
of function evaluations necessary to perform optimization under uncertainty (OUU). We present a method
that simultaneously minimizes the variance of a desired output response while maintaining the constraint
that the mean is fixed at a certain level. We demonstrate the process using an automotive device design
example. The optimization procedure incorporates robustness into the design. We find a set of values for
the design variables that ensure repeatability throughout the manufacturing process and service life.

II. A Taguchi Snap-Fit Example

We demonstrate the process using an automotive device design robustness example. The optimization
procedure incorporates repeatability into the target design leading to efficiency in the manufacturing process
and improved satisfaction for the duration of customer use. The type of snap-fit we present is used to connect
an encapsulated motor stator and motor housing.1

Consider a snap-fit design12 that is composed of both a moving part and a stationary part that are
designed to the specification of three uncertain design variables: spring constant K (N/mm), interference
I (mm), and ramp angle θ (degrees). A fourth noise variable is the friction coefficient µ. The interference
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I represents the vertical distance between the tip on the fixed part and the bottom edge of the tip on the
moving part. In order to snap the parts together, the moving part must move past the tip of the fixed
part. Whether or not the parts permanently snap together is largely based on the ramp angle. The setup is
demonstrated in Figure 1:

Spring constant K

Friction coefficent µ  θ

Fixed Part

Moving Part

Interference I

Figure 1. A snap-fit design example. Figure redrawn from Ref.12

All four variables help to determine the friction force Y (N) between the moving and stationary parts.
This relationship is captured in (1),

Y = KI
µ + tan θ

1 − µ tan θ
. (1)

The bounds on the nominal values of the design variables are provided below.

500 N/mm ≤ K ≤ 600 N/mm
0.1 mm ≤ I ≤ 0.35 mm

45 degrees ≤ θ ≤ 65 degrees

We shall henceforth refer to the above intervals as the design ranges of each design variable. The average
value of the friction coefficient µ is 0.17. As specified in,12 all four variables are normally distributed with
respective standard deviations σK = 10 N/mm, σI = 0.017 mm, σθ = 1 degrees, and σµ = 0.017. We assume
that the above standard deviations hold for all nominal values of the four variables.

We aim to minimize variance and satisfy the constraint on the mean Ȳ = 120 N simultaneously.

III. Reduction to Two Design Variables

In this problem, there are three design variables K, I , and θ which specify how the moving and stationary
parts are related. There are four variables K, I , θ, and µ which are uncertain or noise variables (tolerance
variability) which lead to variability in the result Y .

Let us analyze the three design variables and their effect on Y . We vary the nominal value of each variable
while the nominal value of each other design variable is fixed at the center of its design range. The value of
µ is fixed at its mean. Figure 2 demonstrates that over the design range of K there is smaller change in Y
than there is over the design ranges of I and θ. Furthermore, in Figure 3 we examine all four variables over
a ±2σ interval around the center of their design range or mean. In Figure 3, we also observe the friction
force over its ±2σ uncertainty.

We reduce to two design variables so that we can better demonstrate the following robust optimization
algorithm visually. Based on the relative importance of the three design variables, we relegate K to be
strictly a noise variable. Therefore, we fix the nominal value of the spring constant K and retain two design
variables: the interference I and the ramp angle θ. Now there are two design variables I and θ for which
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Figure 2. The friction force over the design range of each design variable.

we change the nominal values throughout the optimization procedure. There are still four uncertain (noise)
variables K, I , θ, and µ. The nominal value of K if fixed at 550 N/mm and µ is fixed at 0.17 throughout
the procedure.

IV. Analysis of the 2D Design Space

The problem statement has slightly changed. Now, we optimize over two variables I and θ. We still
aim to minimize variance and satisfy the constraint on the mean Ȳ = 120 N. We study the behavior of the
friction force, its mean, and its variance.

We allow the two design variables to vary over their design spaces while we fix the nominal values of the
other variables at K = 550 N/mm and µ = 0.17. We initially use a 25 × 25 linearly spaced grid of points in
the two dimensional design space for visualization purposes.

We examine the design space for the contour Y = 120 N. Figure 4a. displays the contours of Y . We find
that the friction force is mildly nonlinear. During the process, we depend on the Y = 120 N contour being
“close” to the Ȳ = 120 N contour. Figure 4b. illustrates Ȳ − Y where Ȳ is found using 200 samples at each
point. The absolute difference between Y and Ȳ is less than one percent of 120 N throughout the design
space.

We study the contours for both the mean and variance by creating a 25 × 25 grid of sampled points.
Figure 5a. presents the mean contours. Figure 5b. shows an approximation to the standard deviation
contours. At each point, the mean and standard deviation are found by sampling two hundred quadruplets
over distributions of each variable. Based on the direction of decreasing standard deviation, we expect that
the best point is at the lower, right end of the Y = 120 N contour.

By relegating K to be strictly a noise variable, we change the original problem. As we see from these
plots, this is a mildly nonlinear that we can visually track as well. Some of the techniques used in the
following iterative process can be applied to an array of problems, some cannot. We discuss the applicability
of these methods to higher dimensions by applying them to a related example as well.

V. An iterative process: lowering variation while Y = 120 N

We employ an algorithm for finding an “optimal” point which has minimum variance while maintaining
a friction force value of approximately 120 N. This process involves first finding the contour line Y = 120 N,
then stepping along the contour to minimize variance.



F.D. Reale-Levis, V.J. Romero, and L.P. Swiler 4

0.2 0.21 0.22 0.23 0.24 0.25
200

250

300

I

53 53.5 54 54.5 55 55.5 56 56.5 57
200

250

300

θ

530 535 540 545 550 555 560 565 570
200

250

300

K

0.14 0.15 0.16 0.17 0.18 0.19 0.2
200

250

300

µ

Figure 3. The friction force over a ±2σ interval of each variable.

For a visual representation of the following heuristic process, see Figure 6 which provides the position of
each iterate as well as the two tangent approximations to Y = 120 N.

A. Finding Y = 120 N

We maintain that two of the nominal values are fixed at K = 550 N/mm and µ = 0.17. Consider a starting
point at the center of the design space where I = 0.225 mm and θ = 55 degrees.

1. An Analytic Line Search Coefficient Approach

We consider F a function of n variables where F (~x) = F ((x1, x2, ..., xn)). Suppose that we want to reach a
target value of F which we call Ft.

The tangent hyperplane formula is,

(F (~x) − F (~x0)) =
∂F

∂x1
(x1 − [x1]0) + . . . +

∂F

∂θ
(xn − [xn]0). (2)

We can write this as ∆F = ∇F · ∆~x.
Further, consider a single step of gradient descent ~x1 = ~x0 − λ∇F where λ is the line search coefficient.

We rewrite gradient descent in the form ∆~x = −λ∇F .
Combining the tangent plane and gradient descent expressions yields

∆F = ∇F · ∆~x = −∇F · λ∇F = −λ ||∇F ||22 . (3)

We solve for λ to obtain our analytic line search coefficient,

λ = − ∆F

||∇F ||22
. (4)

This yields an iterative process. We perform gradient descent ~xn+1 = ~xn−λn∇F where we have analytic
line search coefficient

λn = −Ft − F (~xn)

||∇F ||22
=

F (~xn) − Ft

||∇F ||22
. (5)
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(a) Contour plot of the friction force Y .
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(b) Contour plot of | Ȳ − Y |.

Figure 4. The friction force Y as well as the relationship between Y and the mean Ȳ .

Now, we apply the above process to our test problem. Although we can use analytic gradients for the
test problem, to mimic a problem in which analytic derivatives are not available, we use forward difference
perturbations of one percent of the design ranges. We retain this gradient for the remainder of the line
search process. We want to find Y = 120 N or some reasonably close value to this target, e.g. within one
percent. At each step, we perform gradient descent

[

Ii+1

Ti+1

]

=

[

Ii

Ti

]

− λi

[

∂Y
∂I

∂Y
∂T

]

(6)

with our updated step coefficient,

λi =
Yi − 120

∂Y
∂I

2
+ ∂Y

∂T

2 =
Yi − 120

||∇Y ||22
(7)

where T = π
180θ and Ti = π

180θi are in radians. After three line search steps, we obtain the point I = 0.1208
mm and θ = 51.5553 degrees where Y = 120.9170 N. We next obtain a tangent line approximation to the
Y = 120 N contour of Figure 4 a.,

L1 = {(I, θ)|1000.5857(I − 0.12085) + 284.6367(θ
π

180
− 0.89981) = 0}. (8)

This line goes through the identified point where Y = 120.9170 N.

B. Moving in the Direction of Lower Variance

Now that we have found where Y ≈ 120 N, we follow the tangent line approximation L1 in the direction of
lower variance. We test three methods to direct movement. We determine which direction to follow and how
large of a step we should take. Referring to Figure 6, the stepsize is chosen to be relatively large, one-fifth
of the length of L1.

1. Linearized response function for calculating variance

The First-Order, Second Moment (FOSM) variance formula5 is presented in 9,

σ2
F =

n
∑

i=1

n
∑

j=1

∂f

∂xi

∂f

∂xj
σi,j (9)

where F = f(~x) = f((x1, x2, . . . , xn)) and σi,j is the covariance of xi and xj .
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(a) A mean approximation using 200 random samples.
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(b) A standard deviation approximation using 200 ran-
dom samples.

Figure 5. The contours of the two-hundred sample mean and standard deviation.
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Figure 6. The iteration history and the approximations to Y = 120 N.

For the test problem, the variance is estimated by,

σ2
FOSM =

∂Y

∂K

2

σ2
K +

∂Y

∂I

2

σ2
I +

∂Y

∂θ

2

σ2
θ +

∂Y

∂µ

2

σ2
µ. (10)

Although we can determine the expressions for the analytic partial derivatives in this problem, we ap-
proximate the partial derivatives using forward difference calculations with one percent of the design range
perturbations in I and θ. Correspondingly, we perturb K by 1 N/mm and µ by 0.0035. Each calculation
of the variance requires five function evaluations. This is a large savings over the 200 sample calculations
performed previously. We compute the variance at the second point using this method. We find a lower
variance when we examine the third point on L1 which is down and to the right as shown in Figure 6.

2. Two Sample Ordinal Variance Estimate

Figure 7 shows a crude approximation to the standard deviation contours using two samples at each point.
The first sample is the quadruplet containing the nominal values at each point (i.e. Y at [K̄, Ii, θi, µ̄]
where the subscript i signifies the design space coordinates of point i in Figure 6) and the second sample
is the quadruplet where we perturb each variable by one standard deviation simultaneously (i.e. Y at
[K̄ + σK , Ii + σI , θi + σθ, µ̄ + σµ]). Each variance calculation requires only two function evaluations.
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We compare the two sample ordinal standard deviation to the two hundred sample standard deviation.
To make Figure 7, we perform 25 × 25 × 2 = 1, 250 function evaluations. We compare this number to the
25 × 25 × 200 = 125, 000 function evaluations used to create Figure 5b. Either set of contours correctly
indicates that moving downward and to the right on L1 reduces variance. Although two sample ordinal is
not able to predict the same absolute behavior of the contours, it is able to predict the relative behavior
which is sufficient for the comparisons between successive points.
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Figure 7. A standard deviation approximation using two previously chosen samples.

3. Sampling based on a Specified Confidence Level

The choice of the stepsize we take is based on a combination of hypothesis testing and seeking a low sample
size. We try two different stepsizes and test at two different confidence levels. We attempt to determine
the combination of stepsize and confidence level that allows us to have some evidence that we are in fact
decreasing variance and also allows us to maintain a low cost.

We want to move along L1. We do not use any more function evaluations to do this. We just need to
find the end points of the line (Is, θs) and (If , θf ). As noted in section two, we know the bounds on both
I and θ. In our expression for L1, the initial point I0 and θ0 is known. We check our first bound where
Is = 0.1 mm and obtain θs = 55.7540 degrees. Similarly, we check our second bound where θf = 45 degrees
to determine If = 0.1534 mm. We want to move some fraction s of the length of L1. So the next point on
along L1 is I = I0 + s(If − Is) and θ = θ0 + s(θf − θs) where 0 < s ≤ 1.

We begin with a one-tenth of the line step. Our first advance down the line takes us to a third point
I = 0.1262 mm and θ = 50.4799 degrees where Y = 120.8303 N. Using Latin hypercube sampling (LHS)
that is implemented in DAKOTA (Sandia-developed software),3 we perform an F-test. The null hypothesis
is that the value of the variance at the third point is the same as the value of the variance at the second
point. The alternative hypothesis is that the variance values at the two points are not equal. We require 41
samples to verify that the two variance values are different with 60 percent confidence. We require 995 to
deem that they are different with 90 percent confidence.

Now, starting from the second point, we advance with a step of one-fifth of the line. Our first advance
down the line takes us to another possible third point I = 0.1315 mm and θ = 49.4045 degrees where
Y = 120.6423 N. We require 12 samples to determine that the two variance values are different with 60
percent confidence. We require 256 to confirm that they are different with 90 percent confidence.

The cost and benefit considerations drive toward larger steps at the 60 percent confidence level. Therefore,
the following steps are one-fifth of the line length apart and tested at the 60 percent confidence level.
Consequently, the third point is I = 0.1315 mm and θ = 49.4045 degrees as discussed above.

We take another one-fifth of the line step to the fourth point I = 0.1422 mm and θ = 47.2537 degrees
where Y = 119.9849 N. Observe the proximity of Y to 120 N. We do another F-test using LHS in DAKOTA.
We find that 14 samples are required to confirm that the variance values at the third and fourth points are
not equal with 60 percent confidence.

After another one-fifth of the line step, we obtain a fifth point I = 0.1529 mm and θ = 45.1029 degrees.
It takes 14 samples to confirm that the variance at the fourth point is not equal to the variance at the fifth
point at the 60 percent confidence level. The value of Y = 118.9819 N at the fifth point.
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We can take one more truncated step down the line to the end point on the lower 45 degree edge of the
design space where I = 0.1534 mm. We call this point 6a. The value of the friction force Y = 118.9258 N.
The friction force is still within one percent of 120 N and we cannot move in any direction on the line to
further decrease the variance.

4. Summary of Procedure that satisfies the original 1 % Criterion

Under the one percent criterion we set for moving down the line, the last step from the fifth point to point 6a
completes our process. We have made it to the final point following one single line L1 without an additional
side step. A summary of our results is included in Table 1. The table lists the point, its Y value, and its
standard deviation calculated by FOSM, two-sample ordinal sampling, and sampling with the sample size
chosen based on sixty percent confidence in the F-test.

Table 1. Iteration history of the heuristic with the original one percent criterion.

I (mm) θ (degrees) Y (N) FOSM Ordinal LHS

1 0.225 55 261.1819 25.9131 36.6749

2 0.1208 51.5553 120.9170 18.4662(5) 22.3074(2) 20.8599(12)

3 0.1315 49.4045 120.6423 17.0504(5) 20.7772(2) 19.2423(12)

18.0946(14)

4 0.1422 47.2537 119.9849 15.8064(5) 19.4389(2) 16.8051(14)

5 0.1529 45.1029 118.9819 14.7037(5) 18.2567(2) 15.6598(14)

6a 0.1534 45 118.9258 14.6540(5) 18.2029(2)

C. Finding a new approximation to Y = 120 N

So that we can demonstrate a side step. We set a new side step criterion of 1 N. We do not see holding
to this tight of a criterion, but for the purpose of illustration we return to the fifth point where Y is more
than 1 N away from 120 N. Therefore, we find another approximation to Y = 120 N. We do this in one
step of gradient descent with the analytic line search coefficient described in (7). This gives us a new point
I = 0.1541 mm and θ = 45.1248 degrees. At this sixth point, the value of Y = 120.0013 N. We obtain an
updated tangent line approximation to Y = 120 N,

L2 = {(I, θ)|778.8915(I − 0.15407) + 253.4266(θ
π

180
− 0.78758) = 0}. (11)

D. Proximity to Ȳ = 120 N

We continue in the direction of decreasing variance. We cannot complete a one-fifth of the line step without
leaving the design space. Therefore we complete a truncated step to the lower edge of the design space. The
seventh point we obtain is I = 0.1548 mm and θ = 45 degrees where Y = 119.9977 N. Now we have found a
point where the friction force is within 1 N of 120 N and we cannot move along the tangent line to further
decrease variance. So, we are done with this part of the process.

Now, we must determine how close this point on the approximation to the Y = 120 N contour is to the
Ȳ = 120 N contour. We want the true mean to be within two-fifths of the standard deviation of the target
mean 120 N. We use two types of methods to study the mean at the final point. We begin with sampling
for a specific confidence interval width. We also discuss point estimate methods.

1. Sampled value of Mean used for Comparison

To compare the accuracy of the methods we use to study the mean, we determine a reference mean by
taking 100,000 LHS samples. We obtain a sample mean value of Ȳ = 120.1941 N and a sample standard
deviation of s = 14.7477 N. From these results, we obtain the 95 percent confidence interval on the mean
(120.1027, 120.2855) N. Now we know that the true mean is within two-fifths of the sample standard deviation
( 2
5s = 5.8991 N) away from our target mean with 95 percent confidence.
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2. Sampling for specific confidence interval within 2

5
σ of Ȳtarget

We use a confidence interval on the mean to determine if the seventh point is near the Ȳ = 120 N contour.
We attempt to fix the width of the confidence interval. We determine the number of samples required to
obtain a 90 percent two-sided confidence interval on the mean with half-width 2

5s where s is the sample
standard deviation.

For the purpose of finding the required sample size n, we assume a standard normal distribution. Thus,

we find n such that 2/5 ≈ t(1−α/2;n−1)√
n

where t(1 − α/2; n − 1) refers to Student’s-t distribution. Using

α = .1, we find that we require n = 19 for the half-width to be approximately 2
5s. Notice that the sample

size obtained is not dependent on the test problem nor the number of variables. If we wanted the half-width

to be γs, we find n such that γ ≈ t(1−α/2;n−1)√
n

.

We analyze the confidence intervals on the mean that are produced when n = 19 using simple random
sampling (SRS) and LHS both implemented in DAKOTA. Among the sixty different samplings, we obtain
five intervals which do not include 120 N. Table 2 provides the results from this sampling activity. Figure
8 provides a visual representation of the information from the table. The seed values are found using the
MATLAB implementation of the Mersenne Twister pseudorandom number generator. Initially, the function
is reset using the seed value 5489. We take the numbers produced by the routine and multiply them by
10,000. We obtain the current seed by taking the ceiling function of that product.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
105

110

115

120

125

130

135

Seed

Co
nf

id
en

ce
 In

te
rv

al
s 

on
 C

al
cu

la
te

d 
M

ea
n

(a) Two-sided 90 percent confidence intervals using SRS.
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(b) Two-sided 90 percent confidence intervals using LHS.

Figure 8. Examination of the two-sided 90 percent confidence intervals of the mean.

The mean estimates and associated confidence intervals determined by Monte Carlo sampling depend
to some degree on the initial seed used in the sampling process. The above results demonstrate that SRS
is more dependent on the choice of initial seed than LHS. Often, LHS is called a ”low variance” estimator
when compared to SRS.

We use 90 percent confidence intervals. Therefore, we expect that after many trials are done, the true
mean will be outside of the confidence interval 10 percent of the time. Among our thirty SRS trials, the high
variability of the SRS estimates leads us to find that more than 10 percent of the intervals did not contain the
true mean. We did not perform a larger number of trials when we found the true mean is inside of the thirty
SRS intervals only 83 percent of the time as opposed to 90 percent of the time. However, previous experience
with a larger number of trials9 indicates that you cannot expect 100(1−α) percent SRS confidence intervals
to contain the true mean the advertised 100(1 − α) percent of the time. This is an effect of using sample
mean and standard deviation estimates with high variability to compute the confidence interval bounds.
Nonetheless, the SRS confidence interval formula can give light to the number of samples needed to obtain
a CI of a certain size as shown above.

We strongly recommend LHS over SRS. Notice from Figure 8 that the LHS estimates are much more
conservative than the SRS estimates. In fact, it may be conservative to use the classical confidence interval

x̄ ± t(1−α/2;n−1)√
n

s formula to determine the 100(1− α) percent confidence intervals for LHS. Then the LHS
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Table 2. SRS and LHS confidence intervals.

Seed Sampling Technique Mean Ȳ (N) s (N) Confidence Interval (N)

8148 SRS 115.785 14.1854 (110.1416,121.4284)

LHS 119.833 15.5234 (113.6573,126.0087)

9058 SRS 117.335 11.5491 (112.7404,121.9296)

LHS 120.018 14.2497 (114.349,125.687)

1270 SRS 124.82 14.5887 (119.0162,130.6238)

LHS 120.467 15.7959 (114.1829,126.7511)

9134 SRS 126.6791 13.9368 (121.1346,132.2236)

LHS 120.76 14.8167 (114.8655,126.6545)

6324 SRS 115.667 16.8978 (108.9446,122.3894)

LHS 120.032 13.881 (114.5097,125.5543)

976 SRS 122.976 12.4719 (118.0143,127.9377)

LHS 119.615 14.4523 (113.8654,125.3646)

2785 SRS 118.216 14.9651 (112.2624,124.1696)

LHS 119.454 16.4037 (112.9281,125.9799)

5469 SRS 126.864 14.4271 (121.1245,132.6035)

LHS 120.329 14.1103 (114.7155,125.9425)

9576 SRS 117.298 17.0785 (110.5037,124.0923)

LHS 119.655 15.5131 (113.4834,125.8266)

9649 SRS 119.506 11.1643 (115.0645,123.9475)

LHS 120.059 14.3264 (114.3595,125.7585)

1577 SRS 121.082 15.0217 (115.1059,127.0581)

LHS 119.819 16.144 (113.3964,126.2416)

9706 SRS 127.133 14.102 (121.5228,132.7432)

LHS 121.192 16.7876 (114.5134,127.8706)

9572 SRS 120.597 12.2284 (115.7322,125.4618)

LHS 120.321 15.6862 (114.0806,126.5614)

4854 SRS 115.641 10.7563 (111.3618,119.9202)

LHS 119.907 14.3039 (114.2165,125.5975)

8003 SRS 122.019 14.5122 (116.2456,127.7924)

LHS 120.661 14.8475 (114.7542,126.5678)

1419 SRS 122.417 10.8078 (118.1173,126.7167)

LHS 120.605 14.0793 (115.0038,126.2062)

4218 SRS 119.381 14.6934 (113.5355,125.2265)

LHS 119.624 14.7675 (113.749,125.499)

9158 SRS 124.835 15.7271 (118.5783,131.0917)

LHS 120.703 15.8219 (114.4086,126.9974)

7923 SRS 122.932 12.4356 (117.9847,127.8793)

LHS 120.262 15.3917 (114.1387,126.3853)

9595 SRS 124.81 14.8572 (118.8994,130.7206)

LHS 120.97 16.1151 (114.5589,127.3811)

6558 SRS 120.511 14.1244 (114.8919,126.1301)

LHS 120.055 14.8441 (114.1496,125.9604)

358 SRS 123.386 14.3511 (117.6767,129.0953)

LHS 119.947 14.8508 (114.0389,125.8551)

8492 SRS 117.539 14.2748 (111.8601,123.2179)

LHS 119.496 16.882 (112.7798,126.2122)

9340 SRS 122.638 12.2653 (117.7585,127.5175)

LHS 120.627 14.6846 (114.785,126.469)

6788 SRS 122.358 9.6727 (118.5099,126.2061)

LHS 120.4 14.2331 (114.7376,126.0624)

7578 SRS 114.476 13.1278 (109.2534,119.6986)

LHS 120.09 14.5632 (114.2963,125.8837)

7432 SRS 121.515 17.3768 (114.602,128.428)

LHS 120.661 15.6441 (114.4373,126.8847)

3923 SRS 122.546 14.2893 (116.8613,128.2307)

LHS 120.862 14.9929 (114.8974,126.8266)

6555 SRS 118.218 12.1118 (113.3996,123.0364)

LHS 119.994 14.3271 (114.2943,125.6937)

1712 SRS 121.802 15.5647 (115.6099,127.9941)

LHS 120.068 16.6043 (113.4623,126.6737)
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success rate of getting a true mean inside a confidence interval is greater than the advertised 100(1 − α)
percent. Nevertheless, there is still a chance that a given LHS estimate of the mean and standard deviation
could result in a confidence interval with a previously chosen magnitude that incorrectly does not contain
the true mean when indeed the true mean is within that magnitude of the mean estimate. We call this a
“false negative.” For our test problem, this indicates that the current mean estimate for a given design point
does not fall within 2

5σ of the target mean even though the true mean of the design point does fall within
2
5σ of the target mean. This prompts one to continue the optimization until a design point is located that
has the minimum variance for a point with a mean within a fixed distance from the target mean.

Although the above circumstance gives a false indication that the optimization must be continued, when
solving the problem, we cannot confirm that we have a “false negative.” Thus we proceed as if the current
point does not have a true mean within the chosen distance of the target mean. It is unwise to proceed
with the same approach used for a “true negative” where the current point’s confidence interval non-falsely
suggests that the mean at the current point is not within the chosen distance from the target mean. At this
point, we can no longer follow the Y = Ȳtarget path. After all, that is what got us to this point in the first

place. We switch to an objective function in the mean Ȳ . We perform gradient descent with an analytic
line search coefficient. To compute the gradient approximation, we apply “spatially-correlated sampling”
meaning we use the same seed to determine the mean at the design point and at the perturbed points. The
use of a common seed at the perturbed design points is important because, as Figure 8 shows, different
seeds have a random biasing effect on calculated means at a fixed point in the design space. This random
biasing with different seeds also persists for closely perturbed design points in the space. Hence, random
seed-induced errors in the calculated partial derivatives will exist unless the seed is held constant for the
calculation of the gradient entries.

In the case of a “false negative,” we must take special care with respect to the spatially-correlated
sampling. If we reuse the seed that produced the false negative to compute the mean estimates at the
perturbed points, then the mean estimates we obtain will be similarly biased. Furthermore, this extra work
and cost should have never been expended in the first place because we got a false indication that this point
did not meet the set criterion.

Therefore, we want to avoid false negatives. We always recalculate the mean using another seed at the
terminal point of the optimization procedure with the objective function in Y to improve method efficiency
and reliability. Given the high probability that the LHS confidence interval calculated with the classical
SRS confidence interval formula will contain the true mean, the possibility of getting two false negatives
in a row is unlikely. Therefore, if the second result is negative as well, there is evidence that the result is
a true negative. Now, the optimization procedure using the objective function in Ȳ can be pursued using
spatially-correlated sampling with the first or second seed. If the second result is a positive indication that
the target mean is contained within the LHS confidence interval, then the third calculation is required to
resolve the contradiction. This third result is used as the true indication since the possibility of obtaining
two false positives in a row is also unlikely.

Similarly, we avoid false positives by performing a second evaluation. A false positive would prematurely
end the optimization procedure at the end of the first optimization phase in Y even though the second
phase in Ȳ should be entered to get to a design point that meets the objective of the target Ȳ within
the 2

5σ tolerance. A second positive essentially confirms that a true positive exists at the design point. A
contradictory negative result following the initial positive one requires a third and deciding evaluation.

We next demonstrate the process change to an optimization in Ȳ when an affirmed true negative arises
at the terminal point in the optimization in Y . Now we believe that the target mean is not within 2

5σ of the
value of the friction force at the final point. For the purpose of illustrating technique, we suppose that our
target mean is 135 N. Notice that 135 N is not inside any one of the 90 percent confidence intervals. The
next seed returned is 7061. The sample mean is 120.061 N and the standard deviation is 13.5418 N. This
evaluation essentially confirms that a true negative exists at this point. Using this new seed, we perform
spatially-correlated sampling at one standard deviation perturbations in the design variables I and θ. We
use LHS implemented in DAKOTA with n = 19 samples to obtain the sample mean at the three points. This
yields a gradient in Ȳ . We perform gradient descent with an analytic line coefficient to find the Ȳ = 135 N
contour. After only one step of gradient descent with an analytic line search coefficient, we obtain the point
I = 0.1721 mm and θ = 45.3282 degrees where the sample mean is 135.1702 N and the sample standard
deviation is 14.0585 N. Now, we minimize variance by following the tangent line approximation to the mean
Ȳ = 135 N in the direction of decreasing variance. We find the point on the lower 45 degree edge of the
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design space where the interference is 0.1742 mm. At this point the sample mean is 135.1718 N and the
sample standard deviation is 13.9177 N. We satisfy the criterion that the mean is within two-fifths of the
standard deviation away from our target mean 135 N and we cannot move in a direction of lower variance
on our tangent line thus we have completed the process.

3. Statistical-Moment Generation Approach (Response Mean by Optimal Placement and Weighting)

We use point estimate methods (PEMs) to determine the mean (first moment) by optimal placement and
weighting of samples. These methods are also referred to as statistical-moment generating methods. Table
3 provides an overview of the results. A visual representation of this table is provided in Figure 9. Observe
the proximity of each of these results to the mean obtained using 100,000 samples. We observe that these
methods provide fairly high accuracy at low cost. Another benefit of using PEMs is that the same samples
and weights used to compute the mean can also be used to compute the variance and standard deviation so
that no further function evaluations are necessary.

Table 3. Increasing accuracy of mean (first moment) estimates.

Method Number of Function Evaluations Mean Ȳ N

Mean value 1 119.9977

Hong’s “2n” 8 120.1934

Hong’s “2n + 1” 9 120.1933

Two-point Rosenblueth“2n” 16 120.1935

Three-point Seo-Kwak “3n” 81 120.1938

LHS with 100,000 samples 100,000 120.1941
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Figure 9. Increasing accuracy of mean (first moment) estimates.

Using the final point as our only sample, we find the mean value estimate2 of 119.9977 N.
Now, we use a 2n PEM7 where n is the number of variables. For our example, n = 4. This case

corresponds to m = 2. Let k = 1, . . . , n and i = 1, . . . , m. We sample the points

xk,i = x̄k + ξk,isk (12)

where x̄k is the nominal value of the kth variable and sk is the standard deviation of the kth variable. Under
the assumption of normality, we have

ξk,i = (−1)3−i√n (13)

and equal weighting is used so that the weights of each point are defined by pk,i = 1
2n . This method yields

the mean 120.1934 N.
A 2n + 1 method7 uses the center point as well. This is the m = 3 case. To clarify the formula, the

kurtosis of a normal distribution is considered to be three. We use the same point-generation formula (12)
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as before, but now, under the assumption of normality, we have

{

ξk,i = (−1)3−i
√

3, i = 1, 2

ξk,3 = 0.
(14)

The weights also change. Now, pk,1 = pk,2 = 1
6 and pk,3 = 1

n −pk,1 −pk,2 = 1
n − 1

3 . When n = 4, pk,3 = − 1
12 .

We see that i = 3 four times thus the same point at the center of the space is reached four times. Since we
evaluate the value of Y at this point only once, the middle point only counts once and ends up getting a
weight of 4 ×− 1

12 = − 1
3 . From this exercise, we obtain the mean estimate 120.1933 N.

The previous two methods required sampling at the center of each face of the hypercube or at the center
of the hypercube where each variable is fixed at its nominal value. The next two methods involve sampling
at the corners of the hypercube. The final method uses samples at the corners, the center of each face, the
center of each edge, and the center of the hypercube.

We try a 2n10 method. Let i = 1, 2 and k = 1, . . . , n. We use (12) just as before, but now

ξk,i = (−1)3−i. (15)

We have equal weighting so pk,i = 1
2n

. We find the mean estimate 120.1935 N.
The final estimation method we try is a three-point Seo-Kwak.11 Now i = 1, 2, 3 and k = 1, . . . , n. We

use (12) with
{

ξk,i = (−1)3−i
√

3, i = 1, 2

ξk,3 = 0.
(16)

The weighting in this case is a bit trickier. The Gauss-Hermite three-point weights are used. Therefore
pk,1 = pk,2 = 1

6 and pk,3 = 2
3 . A product weighting system is used. That means that we take our weight w

at a point to be

w =

n
∏

k=1

p(k, ik) (17)

where ik indicates the value of i for the kth variable at the point. The first-moment result from this method
is 120.1938 N.

4. Assessment of various other approaches for calculating mean

No other methods that the authors are aware of for calculating mean are cost/performance competitive,
including AMV, AMV+/FORM/SORM, and response-surface meta-modeling approaches.

E. Iteration History

Table 4 lists the iteration history starting from the middle of the design space. The variance and standard
deviation provided are found using FOSM. The partial derivatives are computed by a forward difference
approximation. For the design variables I and θ, the perturbations are one percent of their design ranges.
For K, the perturbation is 1 N/mm. For the friction coefficient µ, the perturbation is 0.0035. For a visual
history of the algorithm, refer back to Figure 6.

F. Cost

We first determine the cost of moving along the Y = 120 N contours. We then discuss the variance comparison
cost along the way. We end with the cost of the studies on the mean. Observe that this is the cost associated
with the 1.2 N side step criterion.

We begin with gradient descent with an analytic line search to get our first point on Y = 120 N. This
costs six function evaluations. Determining L1 costs us three more. We follow the line down to the fifth point
while we check to make sure we are within some tolerance of 120 N. This costs four function evaluations.
Altogether we spend 13 function evaluations to just move down L1 .

Now, we consider the cost of the variance comparisons. We have already computed the function value
at all five points on the tangent line so we use the previously computed friction force values in the variance
estimates. Using linear approximations costs us 5 × 4 = 20 more function evaluations. Using the ordinal
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Table 4. Iteration history the heuristic.

Iteration I (mm) θ (degrees) Y (N) s2 (N2) s (N)

1 0.225 55 261.1819 671.4899 25.9131

2 0.1208 51.5553 120.9170 341.0013 18.4662

3 0.1315 49.4045 120.6423 290.7151 17.0504

4 0.1422 47.2537 119.9849 249.8437 15.8064

5 0.1529 45.1029 118.9819 216.1979 14.7037

6a 0.1534 45 118.9258 214.7400 14.6540

6 0.1541 45.1248 120.0013 217.2102 14.7380

7 0.1548 45 119.9977 215.4828 14.6793

sampling requires 5× 1 = 5 additional function evaluations. Alternatively, we do the F-tests to compare the
points that are one-fifth of the line apart using 66 function evaluations. The values used in the F-tests were
generated by LHS which is not incremental. If we had used SRS, we could take advantage of incremental
sampling and the cost would be 54. However, we do not know if the number of samples required to deem
that the variances differed would be the same for SRS. Although not specifically part of the process, the cost
of determining that we need to travel one-fifth of the line is 2,608 function evaluations.

Finally, we tally the number of function evaluations needed to perform the analysis of the mean at the
final point. We attempt to fix the confidence interval magnitude. To do this and do a check for false
positives/negatives, we require 19×2 = 38 function evaluations. However, one confidence interval computed
with 19 LHS results may be sufficient as it was in the example we provided. We save significantly by using
the PEMs. Since we have already computed the friction force Y at the final point, mean value is free. For
the same reason, using 2n+1 requires only 8 more function evaluations. Since 2n and 2n+1 are not sampled
at the same points, we use 8 more to get the 2n result. Sixteen samples are averaged to obtain the two-point
Rosenblueth result. Since the 3n uses the center sample and the same samples at the center of each face
used for 2n + 1, we use only 72 more function evaluations to get the Seo-Kwak estimate.

VI. Comparison of results to other methods

We compare the results of a few other methods to the result of the algorithm when a 1.2 N side step
criterion is used. We use 1,000 LHS samples to determine the mean and standard deviation at the returned
point for each method. The sample mean at the final point is 119.1069 N and the sample standard deviation
is 14.7263 N.

Using DAKOTA we perform an exhaustive search to find the point of best variance where the mean value
of the friction force is approximately 120 N. We implement the nested optimization routines in DAKOTA.
The outer loop is an optimization algorithm while the mean and variance used in the constraints and objective
function are determined in the inner loop.

The outer loop is a Coliny division of rectangles (DIRECT) optimization routine. The global search
balancing parameter is set to zero while the local search balancing parameter is set to 1 × 10−8. We test
DIRECT using two inner loops.

First, the mean and variance are determined by 10 LHS samples in the inner loop. The objective of
DIRECT is to minimize variance subject to the constraint that the mean be within 1 N of the target mean.
We set a solution threshold of 15. This nested routine performs 1,250 function evaluation and returns the
point I = 0.1519 mm and θ = 45.3705 degrees.

Next, we use the DAKOTA reliability package2 to further confirm our results. We aim to minimize
E[| Y − 120 |] + Cσ with a solution threshold of 55. The mean and standard deviation are computed using
mean value with a gradient stepsize of 1 × 10−4. We set the convergence tolerance to 1 × 10−4 and the
threshold delta to 1× 10−8. This optimization is sensitive to the formulation of the objective function. The
C reflects the Cσ reliability.4 When we test C = 3, we find the point I = 0.1365 mm and θ = 48.3338
degrees using 105 function evaluations. Here the mean is 120.3002 N and the standard deviation is 16.5004
N.

We test another optimization routine that is implemented by the Coliny pattern search in DAKOTA.
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The objective is to minimize variance subject to the constraint that the mean be within 1 N of the target
mean 120 N. We set a solution threshold of 15. The solution accuracy is chosen to be 1 × 10−8. We pick
an initial delta of .5. The threshold delta is set to 1 × 10−13. We choose a contraction factor of .85. Using
1,360 function evaluations, the routine yields the point I = 0.1535 mm and θ = 45.4438 degrees where the
mean is 121.1675 N and the standard deviation is 14.9873 N.

VII. Cost Comparison

The cost is the number of function evaluations required. In other words, we compare how many times we
need to compute the friction force Y for each method. It is clear that the cost of our algorithm is dependent
on which methods are used for each task and the problem. We report the cost of performing the algorithm
when the original 1.2 N side step criterion is used.

We see that all of the methods yield similar results. The main reason to use the algorithm we have
provided is the ultimate cost savings.

The cost of the algorithm is dependent on which methods are used. The entire algorithm can be imple-
mented in 26 function evaluations using two sample ordinal variance comparisons and Hong’s “2n” estimate
of the mean and standard deviation at the final point. The maximum cost of the algorithm is 151 function
evaluations when F-test variance comparisons are used and the final mean and standard deviation estimate
are determined by “3n” Seo-Kwak. For the types of applications we consider, the three-point Seo-Kwak is not
cost-performance competitive to the two-point Rosenblueth. We suggest using two sample ordinal variance
comparisons and the “2n” two-point Rosenblueth method to estimate the mean and standard deviation at
the final point. The number of samples required for the PEMs is dependent on the number of variables n.
If n ≥ 5, we suggest using the fixed width CI. A higher dimension case is discussed in detail later.

Overall, we see that there are considerable savings over the stand alone methods discussed in the previous
two sections. Table 5 displays the costs associated with the various methods.

Table 5. Costs of the optimization.

Method Task Options Cost

Heuristic

Find Y = Ytarget 13

Lower Variance

FOSM 20

Ordinal 5

Hypothesis Testing 66

Determine Mean

Fixed-width CI 19

Mean value 0

Hong’s “2n” 8

Hong’s “2n+1” 8

Two-point Rosenblueth “2n” 16

Three-point Seo-Kwak “3n” 72

DIRECT using LHS 1,250

with reliability 113

Pattern search 1,360

VIII. Three dimensional Design Space Optimization

Now that we understand the algorithm, we return to the original problem. The above optimization
process reflects a two design variable scenario. We reincorporate K as a design variable. Now there are three
design variables, K, I , and θ, and four variables that lead to variability in the friction force, K, I , θ, and µ.

We employ the algorithm to find an “optimal” point which has minimum variance subject to the constraint
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that the friction force mean Ȳ = 120 N. Figure 10 presents the iteration history of the three-dimensional
design space problem.
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Figure 10. The iteration history and the approximations to Y = 120 N.

IX. Finding Y = 120 N

We maintain that the nominal value of the friction coefficient is fixed at µ = 0.17. We consider a starting
point at the center of the design space where K = 550 N/mm, I = 0.225 mm, and θ = 55 degrees.

After seven line search steps, we find a point I = 0.1207 mm and θ = 51.5493 degrees where the friction
force is 120.7044 N which is within one percent of 120 N. We find the first tangent plane approximation,

P1 = {(K, I, θ)|0.2195(K − 550) + 1000.3361(I − 0.1207) + 284.099(θ
π

180
− 0.8997) = 0}. (18)

X. Moving in the Direction of Lower Variance

Now that we have found where Y ≈ 120 N, we follow the tangent plane approximation P1 in the direction
of lower variance. Since we are on a plane, the direction to go is not as obvious as it was in the two-dimensional
case.

A. Optimization towards the Corners of the Hyperplane

In the 2D design space optimization procedure, we moved towards the lower right hand end of the tangent
line. We generalize this procedure to N dimensions. In our case, the hyperplane satisfies that constraint
that the f̄ = 120 and the function g to minimize on the plane is the variance.

Suppose ~x ∈ RN where N ≥ 2. For all i, xi is bounded. Let f, g ∈ R where f = f(~x; ~y) and g = g(~x;~z).
The entries of ~y and ~z are parameters that are fixed throughout the optimization. The objective is to
minimize g on the hyperplane f(~x) = f̄ . Let fk = f(~xk) and gk = g(~xk).

1. Foundations

After gradient descent with an analytic line search coefficient, we obtain a point ~x0 ∈ RN where f(~x0) = f̄ .
We find the tangent plane

N
∑

i=1

∂f

∂xi

∣

∣

~x=~x0

(xi − [x0]i) = d = 0. (19)

Now a hypersphere that represents all points a fixed distance ` from ~x0 is expressed by

N
∑

i=1

∆x2
i = `2 (20)
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where ~∆x = ~x − ~x0 and ` > 0 is the problem and point specific line step.
Since ` > d = 0, there are two or infinitely-many points in the intersection of the hyperplane and the

hypersphere. See Table 6. Therefore, we know the points we are looking for in the next section exist.

Table 6. Intersections of the hyperplane and hypersphere.

N Intersection

2 2 points

3 (great) circle

4 sphere

2. Finding pk

Since the entries xi are bounded, the corners of the tangent hyperplane are the points of intersection of the
hyperplane with the hypercube formed by the bounds on the xi. The hyperplane has 2N−1 corners. Let Lk

be the line passing through both ~x0 and corner Ck where k = 1, . . . , 2N−1. We want to move along Lk. We
want pk to be some fraction s of the length of Lk away from ~x0. Subsequently, the ith component of the
point pk is expressed by

[pk]i = [~x0]i + s([Ck]i − [~x0]i) (21)

where 0 < s ≤ 1.

3. Moving on the plane

Let K be the index k where min
1≤k≤N

g is minimized. Let ~x1 = pK .

If g1 ≤ g0, keep moving along LK . If g1 > g0, either decrease ` and move on LK starting from ~x0 or start
over using PK as your initial starting point and moving a smaller fraction of the Lk. Recall that if we move
more than a chosen tolerance away from f = f̄ , we must compute a new tangent plane and find the corners
of that plane.

B. Implementation of the Corners Method

For our problem, we compute g at the pk with the 2 sample ordinal variance. So, the overall cost of checking
all of the corners is 2N or 8 function evaluations.

We set s = 1
2 . We choose a step threshold of one-fifth of the shortest edge of the plane so that if we

cannot move at least one-fifth of the plane, we move directly to the corner of lowest variance. We find the
lowest variance by stepping toward the corner of the hyperplane on the 500 N/mm - 45 degree edge. At the
first step toward the corner, the friction force is 119.2661 N which is within one percent of the target 120 N.
However, at our next step which brings us to the corner, the friction force is 115.6586 N. So, we must find a
new tangent plane approximation.

XI. Finding a new approximation to Y = 120 N

We find the fifth point where the friction force is within one percent of 120 N after two line search steps.
Now, we obtain a second tangent plane approximation P2,

P2 = {(K, I, θ)|0.2383(K − 500) + 707.114(I − 0.1685) + 251.5537(θ
π

180
− 0.78693) = 0}. (22)

We apply the corners method to decide to head toward the corner on the 500 N/mm-45 degree edge. We
cannot move one-fifth of the shortest edge of the plane thus we take a truncated step to the sixth point. At
this point, the friction force is within one percent of 120 N and we cannot move in a lower variance direction
on this plane. We do an optimality check at the end by comparing the variance at the final point to the
two sample ordinal variance at two other points on the plane. The final point is a corner of the plane. We
sample at points on the two edges that intersect at the final point. We find the variance at two points which
are one percent of the edge length from our final point. Among these three points, the final point has the
lowest variance. Therefore, we have completed this part of the process.
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XII. Studies on the Mean at the Final Point

We study the mean at the final point using point estimate methods. Table 7 presents the mean and
standard deviation estimates as well as reference values generated from 1,000 LHS samples. Overall, we
conclude that the mean at the final point is within two-fifths of the standard deviation from the target mean
120 N.

Table 7. Increasing accuracy of mean (first moment) and standard deviation estimates.

Method Function Evaluations Mean Ȳ N s (N)

Mean value 1 119.1658

Hong’s “2n” 8 119.3602 13.6487

Hong’s “2n + 1” 9 119.3601 13.6464

Two-point Rosenblueth“2n” 16 119.3603 13.6836

Three-point Seo-Kwak “3n” 81 119.3605 13.6882

LHS with 1,000 samples 1,000 119.368 13.6908

XIII. Iteration History of the 3D Design Space Optimization

We present the iteration history in Table 8. For a visual representation of this table, refer to Figure 10.
We note that a similar point (500 N/mm, 0.17 mm, 45 degrees) was obtained by Tsai.12

Table 8. Iteration history the heuristic.

K (N/mm) I (mm) θ (degrees) Y (N) s2 (N2) s (N)

1 550.0000 0.2250 55.0000 261.1819 671.4901 25.9131

2 550.0000 0.1207 51.5493 120.7044 340.6632 18.4571

3 525.0000 0.1424 48.2746 119.2661 248.0990 15.7512

4 500.0000 0.1641 45.0000 115.6586 183.2965 13.5387

5 500.0000 0.1685 45.0878 119.1681 186.7583 13.6660

6 500.0000 0.1691 45.0000 119.1658 185.7426 13.6287

XIV. Cost of the 3D design space Optimization Process

To find the first plane P1 we use 14 function evaluations. We check the corners of that plane to find the
direction of decreasing variance using 8 function evaluations. We take two steps on the plane and do variance
comparisons using 3 more function evaluations. Now, we must find a second tangent plane approximation
P2. This requires 8 function evaluations. We determine the direction of decreasing variance using another
eight function evaluations. We move along that line and check the variance with a single function evaluation.
At that corner, we do an optimality check using four function evaluations. Finally, we determine whether
the mean at the final point is within two-fifths of the standard deviation using Hong’s “2n” which requires
8 function evaluations. Therefore, the overall cost is 54 function evaluations.

XV. Comparison of Cost and Results to Other Methods

Just as we did the 2D problem, we compare the results and cost of the algorithm to those of other
methods. We use 1,000 LHS samples to determine the mean and standard deviation at the returned point
for each method. The sample mean at the final point is 119.368 N and the sample standard deviation is
13.6908 N.

Using DAKOTA we perform an exhaustive search to find the point of best variance where the mean value
of the friction force is approximately 120 N. We implement the nested optimization routines in DAKOTA.
The outer loop is an optimization algorithm while the mean and variance used in the constraints and objective
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function are determined in the inner loop.
The outer loop is a Coliny division of rectangles (DIRECT) optimization routine. The global search

balancing parameter is set to zero while the local search balancing parameter is set to 1 × 10−8. We test
DIRECT using two inner loops.

First, the mean and variance are determined by 10 LHS samples in the inner loop. The objective of
DIRECT is to minimize variance subject to the constraint that the mean be within 1 N of the target mean.
We set a solution threshold of 15. This nested routine performs 1,390 function evaluation and returns the
point K = 531.07 N/mm, I = 0.1417 mm, and θ = 48.3347 degrees. There the mean is 120.537 N and the
standard deviation is 16.0440 N.

Next, we use mean value in the inner loop. We aim to minimize E[| Y − 120 |] + 3σ with a solution
threshold of 48. The standard deviation is computed with a gradient stepsize of 1 × 10−4. We set the
convergence tolerance to 1 × 10−4 and the threshold delta to 1 × 10−8. We find the point K = 529.0123
N/mm, I = 0.1417 mm, and θ = 48.3338 degrees using 515 function evaluations. We use Hong’s “2n” to
confirm that the mean is within two-fifths of the standard deviation from 120 N. Here the mean is 120.0699
N and the standard deviation is 15.9831 N.

Now, we use the Coliny pattern search in the outer loop. The objective is to minimize variance subject
to the constraint that the mean be within 1 N of the target mean 120 N. We set a solution threshold of 15.
The solution accuracy is chosen to be 1 × 10−8. We pick an initial delta of .5. The threshold delta is set to
1 × 10−13. We choose a contraction factor of .85. Using 2,940 function evaluations, the routine yields the
point K = 505.2176 N/mm, I = 0.1415 mm and θ = 49.3775 degrees where the mean is 120.2938 N and the
standard deviation is 15.9609 N.

XVI. Conclusions

We have described an algorithm designed to reduce the number of function evaluations required to
perform optimization under uncertainty. This method minimizes variance while ensuring that a prescribed
mean target level of system output is achieved. We applied the optimization procedure to an automotive
device design robustness problem. We studied a two-dimensional example and a three-dimensional example.
We compared the results and cost of our algorithm to other algorithms. We found that the suggested
algorithm finds similar or better results at a lower cost.
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